Growth of brain neurons to process nicotine

Studies have shown nicotine is excreted into maternal milk, so that suckling offspring would be a target of the drug during the pre-weaning period. Since nicotine exposure leads to an upregulation of neuronal nicotinic receptors, this study examines the hypothesis that nicotine delivered via maternal milk is capable of altering neuronal nicotinic receptor regulation in the drug-exposed rat pups. The present study showed that postnatal nicotine exposure via maternal milk was sufficient to induce an upregulation in brain nicotinic receptors similar to that seen in adults that smoke. Such exposure may result in altered neuronal development and synaptic activity and structure, potentially leading to long-term behavioral, learning, and memory deficits.

Upregulation of binding to nicotinic acetylcholine receptors (nAChRs) is observed in the brains of both smokers and animals chronically exposed to nicotine, although whether this in vivo change is accompanied by an increase in receptor function is unknown. In vitro recordings indicate that alpha4beta2- and alpha7-subtypes of nAChRs, which are the most abundant subtypes in the brain, are functionally upregulated following prolonged exposure to nicotine. The possible consequences of functional upregulation for nicotine addiction are discussed. Moreover, we propose a new paradigm that describes the unusual behavior of these neuronal nAChRs and helps to explain the effects of nicotine in the CNS and the diffuse effects of ACh.

Smokers are reported to have a higher density of central nicotinic acetylcholine receptors (nAChRs) that non-smokers at autopsy. Whether this increased receptor density is a response to smoking or a result of genetic variability is not known. While sub-chronic treatment of rats and mice with nicotine results in upregulation of central nAChRs, changes in receptor density in response to cigarette smoke have not been studied previously. In this study, male Sprague-Dawley rats were exposed nose-only for 13 weeks to mainstream cigarette smoke followed by assessment of [3H]nicotine binding in five brain regions of smoke- and sham-exposed animals. In smoke-exposed animals, there was a significant increase in nAChR density in the cortex, striatum, and cerebellum (35, 25, and 31% increases, respectively), while there was no significant change in receptor density in the thalamus and hippocampus. Smoke exposure did not alter markedly the affinity of the receptor for nicotine in these brain regions. Furthermore, up-regulation of nAChRs did not alter the biphasic binding properties by which nicotine binds to its receptor.

There were no changes in the association (fast phase) or isomerization (slow phase) rate constants, and the percent contribution of slow and fast phase binding to nAChRs was not altered in the up-regulated receptor population compared with control. Similar results were observed following chronic nicotine exposure of cultured cortical cells from fetal rat brain or cells transfected with the alpha 4 beta 2 nAChR subtype. These results show that the up-regulation following smoke exposure in the rat is phenomenologically similar to that observed in vitro. These data provide preliminary evidence for a relationship between cigarette smoking and nAChR up-regulation in vivo and suggest that similar mechanisms of upregulation may underlie chronic smoke exposure of live animals and nicotine exposure of artificially expressed alpha 4 beta 2 receptors in vitro.

First, say to yourself what you would be; and then do what you have to do. Health Service Food and Human Resources: Discount Wholesale Cigarettes Online

Leave a Reply

Your email address will not be published. Required fields are marked *

To prove you're a person (not a spam script), type the security word shown in the picture. Click on the picture to hear an audio file of the word.
Anti-spam image